在AVL的Benchmark报告里面,有以下的这组数据:Model 3的充电功率提升是在电芯温度达到26度以后,然后电池的温度持续上升,达到49度,在前后这段时间电池冷却系统开始启动。从下面这张图中,我们可以看到Model 3对于快充的功率是建立在较高的温度提升上面的。
在Bjørn Nyland做的一些实验中,我发现了一个更奇怪的事情:在持续的直流充电过程中,电芯在快充产热,在一定的温度范围内之内,前后两个电机的温度不断提升,不断产生热量加热电池。
如下图所示,这个实验是在Ionity的350kW的快充桩上做的,所以最高的Model 3的功率可以达到近200kW,电芯的温度一直在提升,到峰值的54度。
在这个过程中,前后电机的转子温度、电池冷却液的输入温度和电芯温度一览无余,大家看看这个策略。
而在监控中,最高温度达到了54.5度。需要强调的是,特斯拉的温度传感器的布置和我们预想的不太一样,所以如此小的温度差异是布置的均一性造成的,而不是实际的温度差异——在长模组里面,真实的温度差异不会只有1度。所以某种意义上,在这个直流快充的逻辑设计里面,是容忍电芯达到相当高的温度,然后在充电后期使用冷却系统再把电池的温度降下来。
2) 50kW下的电池温度管理
个人觉得最最不可思议的事情,是Bjørn Nyland在50kW做的实验也呈现了一个惊人的相似:在50kW的直流快充桩上的功率、SOC和温度曲线,描绘出来以后如下图所示,把电池的温度管理和我们常规的管理策略对比来看有非常大的差异,电池的温度一直被加热到40°左右的时候才停止,虽然这个更低的许用功率已经能够满足50kW的需求。
前后电机的温度如下图所示,分别在90度和70度左右,这是可以看到控制策略里面有意采取了加温的措施,所以在SOC达到65%左右之前,电池的冷却液(这时候该叫加热液)的温度比电芯的平均温度来得高。
所以能够确认,特斯拉把整体快充的温度设置在了26度以上才开始加功率,在较低功率下也使用较高的温度策略来充电,这个设计其实和我们之前在30-35度开始进行冷却的想法是完全不一样的。温度这个参量,在这里面有了更多的意义,只能从电芯的微观层面去解释了。
这时又要回到电芯层面了——在较高温度下的快充,如何保证温升在一定范围内,同时要保障安全性。
小结:
通过Scan My Tesla这个软件可以获得不少的信息,真是能从里面的软件参数反推出一些细思极恐的策略。
文|朱玉龙
图|朱玉龙 网络及相关截图